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1. Introduction

In this letter two following questions are addressed: Is it possible to use the Saint-Venant
principle in the elastodynamic problems of impact loads acting onto an elastic half-space, and
under which conditions? Note that, in general, the Saint-Venant principle may be briefly described
in the following way: if a given system of forces acting on a small area of an elastic body surface is
substituted by another statically equivalent forces system then this change introduces only local
variations of the stress–strain state, and the differences between two corresponding stress–strain
states might be negligible sufficiently far from the forces place action [1,2].

In order to give an answer to the above formulated questions, the classical axially symmetric
Lamb’s problem is considered. The response of a semi-infinite elastic solid to a pulsed
concentrated force is referred to as ‘‘Lamb’s problem’’. Following Lamb’s classic paper [3] this
problem has been investigated by many authors (see Refs. [4–7] and citations therein).

It is assumed that an impacting load of the unit jump-type possesses the different distribution
on a circle of an elastic half-space. The stress–strain state is defined applying the Hankel and
Laplace transformations, and then the inversed transformations are found numerically.

2. Mathematical formulation of the problem

Let the plane z ¼ 0 being the boundary of an elastic half-space is subjected to an axially
symmetric impact excitation (load) of the jump type along the z-axis. In the considered half-space,
the strain–stress state is excited, and the longitudinal (dilatation), shear (distortion) and surface
Rayleigh types of wave pulses are born.
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The problem is reduced to find the solutions of two linear dynamical equations (in cylindrical
co-ordinates) of the form
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with the attached boundary

szz ¼ �ZðrÞf ðtÞ; szr ¼ 0 for z ¼ 0; u;w-0 for z-N ð3Þ

and initial conditions

u ¼ @u=@t ¼ w ¼ @w=@t ¼ 0 for to0 ð4Þ

where: l; m are the Lam!e constants, r is the density, uðr; zÞ; wðr; zÞ are the displacement
components in direction of the axes r and z; respectively.

Furthermore, srr szz; and syy are the normal components in cylindrical co-ordinates, szr is the
tangential component of the stress, and HðtÞ ¼ 1; t > 0; HðtÞ ¼ 0; to0:

It is assumed that a variation of f ðtÞ in time is of the unit jump type

f ðtÞ ¼ HðtÞ; *fðsÞ ¼ L½HðtÞ� ¼
Z

N

0

HðtÞe�stdt ¼ 1=s

where L denotes the Laplace transform, and that the load variations on the surface are governed
by the following formulae:
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where H is the Hankel transform and JnðxÞ is a Bessel function of the first kind of order n

(n ¼ 0; 1; 2;y).
Although the radius of the surface load action r0 may change and even may approach zero

(concentrated force), but always the following relation holds: limr0-0; Z-N ZðrÞpr20 ¼ P: The
Hankel transformation of a force yields %ZðkÞ ¼ P=2p:

3. Solution of the problem

Applying the Laplace and Hankel transformations to Eqs. (1) and (2), and taking into account
the homogeneous initial conditions (4) yield linear differential equations with respect to the
unknown z: Since a solution of these equations depends on four unknowns, they are found using
four boundary conditions (3). Applying the inverse Laplace and Hankel transformations, and
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introducing the new integration variables (r > 0), the following relations are obtained:
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Note that a nonstationary solution for t-N approaches a static solution, which can be presented
in the following form:
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The Lamb’s problem (a concentrated load) is related to representations (5)–(7), where #ZðxÞ ¼ 1:

4. Numerical analysis

Taking into account positions of singular points of the integrated functions (branch points
7ix; 7iðc1=c2Þx and the poles 7iðcR=c2Þx) the integration contour AB in the inverse Laplace
transformation is replaced by the contour CDEF consisting of the sectors DE; CD and EF (see
Fig. 1), which is in agreement with the Cauchy’s integral theorem.

For instance,

f ðtÞ ¼
1

2pi

Z c0þiN

c0�iN

*fðyÞeytdy ¼ J1 þ J2 þ J3; ð8Þ

where: J1 is the integral calculated along the sector DE; J2 is the integral calculated along the
sector CD; and J3 is the integral calculated along the sector EF :

Taking into account the property of the transform *fðyÞ of the function f ðtÞ; i.e., *fðyÞ ¼ *fð %yÞ (bar
denotes a conjugated value), the integrals have the forms
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The numerical computations of integrals (9) and (10) are carried out using the results included
in Ref. [8], and also applying the Gauss quadrature formula. During the numerical analysis of the
inverse Hankel transforms the occurred integrals are replaced by a sum of finite integrals with the
limits defined by the roots of the appropriate Bessel’s function of the form

I ¼
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XN
k¼0
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Z xn;kþ1
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where xn;k; k ¼ 1; 2; ::: is the kth positive zero of JnðxÞ; xn;0 ¼ 0: hðxÞ denotes under integral
functions in Eqs. (5)–(7). The series in Eq. (11) is an alternating series, and the summation can be
carried out using the e-algorithm of Wynn [8]. In order to obtain numerically the integrals Ik the
Gauss quadrature formula is applied.

In order to compare the obtained results with those known from literature and related to the
Lamb’s problem [5,6], the following parameters are taken: m ¼ l; n ¼ 0:25:

The parameters, occurred in Eqs. (9) and (10), have the following values: c0 ¼ 5=t; b ¼
xc1=c2 þ 5=t ¼

ffiffiffi
3

p
x þ 5=t: The numerical analysis of the inverse Hankel and Laplace transforms

is carried out using Eqs. (9) and (10). The obtained results are shown in Figs. 2–4.
In Fig. 2 the non-dimensional horizontal displacement in the radial direction versus non-

dimensional time is reported. The results are presented for different values of the non-dimensional
parameter x ¼ r=r0; where r0 is the radius characterizing the load area. The dashed curve
corresponds to the jump input of the type of concentrated force (r=r0 ¼ N), and both analytical
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Fig. 1. Integration contour of the inverse Laplace transformation and singularities of the integrated functions.
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and numerical results concerning this load are reported in Ref. [5,6]. The solid curves correspond
to the uniformely distributed load within the circle area of the radius r0: Curve 1 (x ¼ r=r0 ¼ 16)
characterizes displacement of a point located in the distance of 16r0 from the load centre. Curves 2
(3) characterize displacements of the points located in the distances of 8r0 (4r0) from the load
centre, respectively.
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Fig. 2. Horizontal displacement versus non-dimensional time for different values of the radius r0 characterizing the

loaded area (dashed curve 0: r=r0 ¼ N; solid curves 1: r=r0 ¼ 16; 2: r=r0 ¼ 8; 3: r=r0 ¼ 4).
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Fig. 3. Vertical displacement versus non-dimensional time for different r0 values (dashed curve 0: r=r0 ¼ N; solid

curves 1: r=r0 ¼ 16; 2: r=r0 ¼ 8; 3: r=r0 ¼ 4).
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Consider briefly the first case (concentrated force). A point located at a distance of r metres
from the load origin is achieved by perturbation of the dilatation wave (P-wave) in the time
instant r=c1 (the corresponding non-dimensional time t ¼ c2ðr=c1Þ=r ¼ c2=c1E0:557). In the time
instant r=c2(the non-dimensional time t ¼ c2ðr=c2Þ=r ¼ 1) the observation point is reached by a
distortion wave (S-wave) moving with the c2 velocity. A Rayleigh wave reaches the observation

point at the time instant r=cR (t ¼ c2=cR ¼ c2=ðc2ð
ffiffiffi
2

p
� 2=

ffiffiffi
3

p
ÞÞE 1.088), and cR ¼ 0:919 c2: Both

theoretical and numerical analysis of the problem [5,6] exhibits a singular perturbation
yielded by the Rayleigh wave (both u and w become infinite). A nonstationary horizontal
displacement after a certain time interval approaches a static solution, i.e.
ð2ppr=PÞuðr; 0; tÞ-�ð1� 2nÞ=2 ¼ �0:25:

Consider now the uniformaly distributed load (see, for example, curve 3), and a point located in
the instance of r metres from the load centre. A disturbance does not appear until the time instant
of ðr � r0Þ=c1: The observation point is reached by the P-wave moving with the velocity c1 at the
time instant ðr � r0Þ=c1 (t ¼ ð1� r0=rÞc2=c1 ¼ ð3=4Þ

ffiffiffi
3

p
=3E0:433). The S-wave with velocity c2

reaches the observation point at the time instant ðr � r0Þ=c2 (t ¼ 1� r0=r ¼ 3=4). The observation
point is achieved by the surface Rayleigh wave moving with the velocity cR ¼ 0:919 c2 in the time
instant ðr � r0Þ=cR (t ¼ 0:75c2=cRE0:816). Note also that in the time instant ðr þ r0Þ=cR

(t ¼ 1:25c2=cRE1:36) the last perturbation yielded by the most distant loading point and moving
with the velocity cR ¼ 0:919 c2 reaches the observation point. Comparing the curves 1, 2, 3 with
the dashed curve 0 (solution to the ‘‘Lamb’s problem’’) one may conclude, that after the Rayleigh
surface wave transition caused by a disturbance occurred in a point of the loaded surface situated
at the largest distance with respect to the analysed point, the Lamb’s analytical solution can be
used. In addition, the accuracy of the results yielded by the Lamb’s formula increases with the
increase of the distance between two mentioned points (see curve 1 in Fig. 2).
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The vertical displacement at the surface point of the elastic half-space versus the non-
dimensional time is reported in Fig. 3 for different x ¼ r=r0 values. The same description as in the
case of Fig. 2 holds, and also the observed behaviour is similar. An unstationary vertical
displacement for various disturbance areas, after a certain time interval approaches a static
solution, i.e. ð2ppr=PÞwðr; 0; tÞ-1� n ¼ 0:75:

Finally, in Fig. 4 the non-dimensional static horizontal displacements (curves 1) and vertical
displacements (curves 2) versus parameter x ¼ r=r0 are reported. The dashed curves correspond to
the concentrated force, whereas the solid curves refer to the uniformly distributed loaded area on
the whole circle surface with the radius r0: The obtained results do agree well with de Saint-Venant
principle stating that on a certain distance (for example r ¼ 3r0) a solution with respect to the
concentrated force is equal (with a certain accuracy) to a solution with respect to the loaded area
defined by the radius r0:

5. Conclusions

The carried out numerical analysis yields the following conclusion. The deformations appeared
in the certain distance (for instance, on the length of three radiuses of the loaded area) from the
load centre of various load distributions located in the plane being a boundary of an elastic half-
space differ insignificantly after the Rayleigh wave transition takes place, and the analytical
solution to the Lamb‘s problem can be used.

In other words, the de Saint-Venant principle can be used in various elastodynamical problems
on a surface after the lapse of time t ¼ l=cR (cR is the Rayleigh wave velocity), where l denotes a
largest distance between observed point and a point belonging to the loaded area, only if the
reflected waves do not appear.
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